

Calculating The Power Demand

$$P_{c} = \frac{Q}{396,000 \cdot \eta} \cdot k_{c}$$

$$P_{c} = Power HP \qquad v_{f} = Feed \text{ speed in/min}$$

$$a_{p} = Depth \text{ of cut inch} \qquad \eta = Efficiency \\ k_{c} = Cutting \text{ force per inch}^{2}$$

$$(Lbf/inch^{2})$$

Calculating Average Chip Thickness, hm, and Cutting Force Per inch², kc

Use the formula below or use the table on page 282–283.

hm = Average chip thickness inch

- f_Z = Feed per tooth inch/tooth
- a_e = Width of cut inch
- D = Cutter diameter inch
- ω_e = Engagement angle (see table below)
- κ = Cutting edge angle[°]

Engagement Angle

- k_{C} = Cutting force/in² Lbf/inch²
- γ_0 = Effective rake angle (Rake angle of cutter (γ_0) +
 - rake angle of insert)
- $h_{\rm m}$ = Average chip thickness inch
- m_C = Exponent (see page 297) $k_{C1,1}$ = Cutting force for .04 inch chip thickness Lbf/inch²

Effective Rake Angle, m_c -Factor and $k_{c1.1}$ -Value

Effective rake angle value can be found on the insert pages. Add the value of the actual cutter.

The m_c -exponent and the $k_{c1.1}$ -value for each material group can be found on page 297.

Engagement angle can be read from a simple drawing using a graduated arc.

Example

Calculate power demand for a face milling cutter: 220.13, Ø 6.30, z = 7Insert: SEKR42AFTN-ME13 T25M.

Calculate RPM and Feed Speed

See formula on page 277 n = $\frac{705 \cdot 12}{\pi \cdot 6.30}$ = 428 RPM

 $v_f = 7 \cdot .0083 \cdot 428 = 24.8$ in/min

Calculate Average Chip Thickness, h_m a_e/D = 4.72/6.30 = 75% Engagement ar

Engagement angle $\omega_e = 97^\circ$ (see table above) $\frac{360 \cdot .0083 \cdot 4.72}{5} \cdot \sin 45^\circ = .0052 \text{ inch}$ Average chip thickness hm = $\pi \cdot 6.30 \cdot 97$ Calculate Cutting Force Per mm² k_C See page 309 Material Group 3 Rake angle for cutter $= 12^{\circ}$ (page 42) k_{c1.1}-value = 218,000 Lbf/in² Rake angle for insert = 24° (page 253) m_{c} -exponent = 0.25 Effective rake angle $\gamma_0 = 36^\circ$ Cutting force per inch² $k_c = \frac{1-0.01 \cdot 36}{1-0.01 \cdot 36}$ --- 218,000 = 232,354 Lbs/inch² (<u>.005</u>2)^{.25} Calculate Power, Pc .04 Efficiency $\eta = 80\%$ 23.06 Power P_C = $\frac{2000}{396,000 \cdot 0.80}$ – · 232,354 = 16.9 HP