
Journal of Materials Processing Technology 86 (1999) 17–44

Finite-element analysis and simulation of machining: a
bibliography (1976–1996)

Jaroslav Mackerle *
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Abstract

This paper gives a bibliographical review of the finite-element methods (FEMs) applied to the analysis and simulation of
machining. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations
on the subject that were published in 1976–1996. The following topics are included: material removal and cutting processes in
general, computational models for specific machining processes, effects of geometric and process parameters, thermal aspects in
machining, residual stresses in machining, dynamic analysis and control of machine tools, tool wear and failure, chip formation
mechanism, and optimization and other topics, respectively. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Machining is a term covering a large collection of
manufacturing processes designed to remove material
from a workpiece. The primary machining processes
are: turning, shaping, milling, drilling, sawing, abrasive
machining, and broaching. Some advanced machining
methods used today are: electric discharge machining
(EDMs), laser cutting, chemical milling, high-pressure
water cutting, electrochemical machining, etc.

Turning is the machining process used to generate
external, cylindrical forms by removing material by a
cutting tool. Boring is internal turning to generate
internal shapes. Shaping processes remove material
from surfaces through the use of a single-point tool
supported by a ram that reciprocates the tool in a linear
motion against the workpiece. Milling is a process for
generating surfaces by removing a predetermined
amount of material from the workpiece. It employs
motion between the workpiece and the rotating cutting
tool. Drilling is an operation for producing round holes
in materials. Sawing is a process of cutting a workpiece
with power saws of various geometry. The grinding
process is an abrasive machining process where material

is removed from a workpiece in small chips/particles by
the mechanical action of abrasive particles. Finally,
broaching is a process where a cutting tool that has
multiple transverse cutting edges is pushed/pulled
through a hole or over a surface to remove material by
axial cutting. The terminology and detailed explanation
of machining and metalworking operations can be
found in [1,2].

The direct experimental approach to study machining
processes is expensive and time consuming, especially
when a wide range of parameters is included: tool
geometry, materials, cutting conditions, etc. The alter-
native approaches are mathematical simulations where
numerical methods are applied. Amongst the numerical
procedures, the finite-element methods (FEMs) are the
most frequently used. To study machining is a quite
complicated task where complex disciplines such as
metallurgy, elasticity, plasticity, heat transfer, contact
problems, fracture mechanics, and lubrication are in-
volved. The goal of finite-element analysis is to derive a
computational model predicting the deformations,
stresses and strains in the workpiece, as well as the
loads on the tool working under specific cutting
parameters.

Several finite-element techniques are available today
for accurate and efficient modelling of the machining* Tel.: +46 13 281111; fax: +46 13 282717.
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process: material and geometrical non-linear analysis,
mesh rezoning techniques, element-separation for chip
formation modelling, element separation criteria, tool-
wear modelling, residual stress prediction, etc. In many
cases the FEM simulations have also been validated by
comparisons with the results of experimental
investigations.

This paper gives a review of published papers dealing
with FEMs applied in the area of machining processes.
The subject is too large to be covered extensively in a
single paper, therefore only a synoptic view will be
given. For a more efficient information retrieval, the
lists of references of papers published between 1976 and
1996 are divided into the following topics: (i) material
removal and cutting processes in general; (ii) computa-
tional models for specific machining processes; (iii) the
effects of geometric and process parameters; (iv) ther-
mal aspects in machining; (v) residual stresses in ma-
chining; (vi) dynamic analysis and control of machine
tools; (vii) tool wear and failure; (viii) the chip forma-
tion mechanism; and (iv) optimization and other topics.

This paper is organised into two parts. In the first
part each topic is handled and current trends in the
application of finite-element techniques are mentioned.
In the second part, an appendix, papers published in
the open literature for the period 1976–1996 on the
subjects presented above are listed. References have
been retrieved from the author’s database, MAKE-
BASE [3,4]. Readers interested in finite-element litera-
ture in general are referred to [5] or to the author’s
Internet Finite Element Book Bibliography (http://
ohio.ikp.liu.se/fe/index.html).

2. Material removal and cutting processes in general

This section deals with the investigation of metal
cutting processes in general. These processes are depen-
dent on the workpiece parameters (material type, crys-
tallography, temperature, pre-deformation), cutting
tool parameters (tool design geometry, material), and
cutting parameters (speed, feed, depth of cut, environ-
ment). Some studies have been done that include the
influence of only a few specific topics, other, more
advanced studies, have been conducted to understand
the complex physical behavior underlying the specific
machining process.

Two basic models are in focus: orthogonal (two-
force) models, and oblique (three-force) models. Most
machining processes are oblique but the orthogonal
model studies are easier to simulate and they can be
useful/adequate for understanding the basic mechanics
of machining processes.

The topics included in this section on numerical
simulations of material removal are: the material-re-
moval process; surface development; orthogonal cut-

ting; oblique cutting; sheet cutting;
intermittent/interrupted cutting; conception of machine
tools; cutting tool performance; metal flow studies;
shear-band phenomena; strain localization; workability
issues; contact stresses and friction in machining; tool–
work interactions; the workpiece in a machining fixture;
high-speed machining; machining additives.

The types of analysis are: 2-D and 3-D; material and
geometrical non-linearity; thermomechanical; thermoe-
lastic–plastic; thermo–viscoplastic; elasto–plastic; vis-
coplastic; rigid–plastic; large deformation; ALE
thermomechanical; Eulerian; adaptive remeshing.

The types of material are: metal; steel; aluminium;
titanium alloy; nickel-base superalloy; ceramic; com-
posite; polymer; ceramic tools; carbide tools; tungsten
carbide tools; diamond tools.

3. Computational models for specific machining
processes

Listed references are sorted into the following cate-
gories: turning, milling, drilling, sawing, grinding,
broaching, and advanced machining; in the last cate-
gory subjects such as EDM, laser cutting, electrochemi-
cal machining, flame cutting, high-pressure water
cutting, ultrasonic machining, nanoscale cutting etc. are
included.

The machining of composites, especially of metal
matrix composites, causes particular problems such as
greater tool wear; also the hardness of the ceramic
fibres and particles is too high. Usually polycrystalline
diamond-tipped tools are necessary for the successful
machining of metal–matrix composite.

Physical understanding of microcutting is necessary
for developing and improving the process of ultrapreci-
sion metal cutting technology. FEMs have also been
used to simulate nanoscale cutting. The purpose of
these studies was to clarify the chip removal of
nanoscale cutting and to reexamine the cutting process
in general.

The topics included in this section are: turning—
turning and tool fracture; tool wear in turning; dynamic
response in turning; machining accuracy in turning;
thermal behavior of a tool during turning; cutting and
clamping forces in turning; design of legs for a lathe;
single point diamond turning; interrupted turning and
tool chipping; finish turning; milling—modal analysis
of a milling machine; dynamic response in milling; tool
and tool beds design; machine-tool modelling; wear of
tools in milling; analysis of cutting forces; thermal
problems in milling; design of a mill spindle; face
milling; plain milling cutter; helical milling cutter; end
milling; hot strip milling; milling of thin-walled sec-
tions; drilling—dynamic response in drilling; thermal
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problems in drilling; design of drills; drill wear; tor-
sional strength for twist drill; drills under bending;
residual stresses in drilling; hole-drilling method of
residual stress measurements; composites during
drilling; burr formation in drilling; twist drills; multi-
facet drills; thick web drills; radial drilling machines;
high speed precision drilling; sawing—modal analysis
of a band system; dynamic response in sawing; saw-
tooth interface simulations; sawing of composites; band
saw blades; circular saw rolls; grinding—thermal prob-
lems in grinding; machine–tool interaction; grinding
and phase transformation; residual stresses in grinding;
design of grinding wheels; fracture of grinding wheels;
bonded grinding wheels; abrasive and superabrasive
grinding wheels; grinding burrs; creep-feed grinding;
high-speed grinding; ultrahigh-speed grinding; cylindri-
cal transverse grinding; plunge grinding; surface grind-
ing; wet grinding; crankpin grinder; microgrinding;
broaching—tool–workpiece in broaching; forces,
power, stress and displacement in broaching; ad6anced
machining—laser machining; ultrasonic machining;
electrochemical machining; surface micromachining;
nanoscale cutting; superprecision machining; EDM;
plasma and flame cutting; high-pressure water jet cut-
ting; applications in—electronics, acoustics, precision
engineering, machining of composites, machining of
ceramics.

4. Effects of geometric and process parameters

For every machining operation it is necessary to
select a cutting speed, a feed, and depth of cut. New
cutting tool materials and tool geometries are improv-
ing product quality and manufacturing productivity.
Papers presented in this section try to study the connec-
tions between these input variables and process behav-
ior. A large number of the input variables makes it
almost impossible to deal with a such complex situa-
tion. Available mathematical models try to predict the
direction of the shearing process of metal cutting, cut-
ting forces, tool wear, etc. The main objective of re-
search is to apply the FEM to study the effects of
geometric and process parameters in the process of
machining.

Some of the topics included are: tool geometry effects
on the cutting of hardened/quenched steels; the effects
of tool geometry on chip flow and wear; tool life owing
to engagement angle; rake-angle effects on orthogonal
cutting; the effects of tool geometry on punching; the
effects of tool geometry on dynamic vibrations; the
modelling of machining under various cutting condi-
tions; metal cutting parameters and manufacturing
accuracy.

5. Thermal aspects in machining

High temperatures in machining are the cause of
unsatisfactory tool life and limitations on cutting speed.
Various numerical and experimental techniques are
available to study the flow of cutting heat and the
temperature distribution within both the workpiece and
the tool. The role of temperature becomes more impor-
tant with increasing cutting speed and the usage of
more advanced ceramic materials. The thermal model
of a machine tool should account for the following
heat-transfer situations: heat conduction, heat conduc-
tion across contact zones, radiation, forced convection
along rotated element surfaces, free convection along
external surfaces, and convection along the body sur-
faces that is caused by rotating parts. The finite-element
model should preferably be in 3D.

A note on the grinding process: grinding requires an
extremely high energy input per unit volume of material
removal compared with other machining processes. Al-
most all of the energy is converted to heat in the
grinding zone. An elevated temperature occurs in the
grinding wheel as well as in the workpiece.

The topics included in this section: temperature dis-
tribution in machining; the effect of contact pressure on
heat transfer in machining; the influence of process
variables on the temperature distribution; heat flow
through a cutting tool; tool–work interface tempera-
ture; thermal cracking of cutting tools; control of ther-
mal deformations; cooling in machining; effect of
thermal load on the residual stress; thermal phenomena
in—orthogonal machining, orthogonal micromachin-
ing, high-speed machining, milling, drilling, boring,
grinding, interrupted turning, grinding, honing, laser
cutting; cutting temperature in ceramic tools; thermal
phenomena in bonded carbide tipped tools.

Type of analysis: 2D and 3D analysis; thermome-
chanical coupling; thermoelastoplastic large deforma-
tion analysis; thermoviscoplastic analysis; ALE
thermomechanical analysis; rigid-plastic FEM; simula-
tion of moving heat sources; adaptive remeshing tech-
niques; thermal error modelling; improved thermal
simulation by help of experimental data.

6. Residual stresses in machining

The machining process evokes a residual stress in the
surface layer. The main cause of a residual stress is the
phase transformation of the surface material. Distor-
tions and residual stresses are unwanted results from
abusive machining conditions. The residual stresses on
the machining surface is an important factor in deter-
mining the performance and fatigue strength of
components.
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Some of the topics included are: analysis and mea-
surement of residual stresses in machining; plasticity
effects on residual stress measurement; effect of thermal
and mechanical loads on residual stresses; residual
stresses due to a moving heat source; the effect of
cutting on the redistribution of residual stresses; the
effect of tool condition on residual stresses; hole-
drilling technique for measuring residual stresses; resid-
ual stresses in orthogonal metal cutting; residual
stresses in metal grinding; residual stresses in the grind-
ing of metal–matrix composites.

7. Dynamic analysis and control of machine tools

The whole cutting system includes a spindle, bearings
and a cutter. The design of the spindle system dynamic
characteristics is based on the variation of parameters
such as the bearing preload, the bearing spacing, mass
inserts on the spindle and damping. The dynamic char-
acteristics of the spindle assembly affects the cutting
ability of the whole machine.

In turning, which is a widely used machining process,
self-excited or chatter vibration is a serious problem
that effects the deterioration of the surface finish, af-
fects the dimensional accuracy of the workpiece, and
reduces the tool/machine lifetime. Also, forced vibra-
tions can be induced in machine tools by component
defects, unbalanced parts, poor assembly, etc. To study
dynamics in turning and to reduce/suppress chatter
vibration is a very important task. Fundamental studies
of this complex process are still needed.

Vibration from a milling cutter occurs during ma-
chining due to slenderness and long overhang, and
generates waviness on the machined surface and hence
deterioration in machining accuracy/quality. There are
two different approaches to study the dynamic response
during machining: one is a cutting force model that
does not contain many cutting parameters; the second
approach is a structural dynamic model of the whole
cutting system.

The topics included in this section are: cutting pro-
cess dynamics; studies of dynamics phenomena in
milling, grinding, turning, drilling; machine tool bed
dynamics; parameter identification of machine tools;
damping treatment; vibrations of machine tools; dy-
namic analysis of lathe spindle assembly; dynamic anal-
ysis of a high-speed spindle-bearing assembly; dynamic
analysis of high-speed drilling; the dynamics of a ma-
chining robot; dynamic analysis of a saw blade; the
suppression of a chatter vibration; boring bar chatter
control; vibration control of cutting processes; vibra-
tion control of boring; vibration control of ultrasonic
tooling.

8. Tool wear and failure

The failure of mechanical components is caused pri-
marily by fatigue. In machining, mechanical and ther-
mal loads, and phase transformation, are main factors
that affect the surface integrity of a machined part.
Plastic deformation and friction in the contact between
the tool and the workpiece generate heat, which raises
the temperature of both components. The elevated tem-
perature of the tool reduces its wear resistance and
changes both the geometry and the size. This can result
in increased cutting forces with larger deflections in the
workpiece and may create a chatter condition.

Cutting tools are changing constantly with new types
of materials, special tool coatings and new types of
cutters, mills, drills, etc. High-speed steel, cast non-fer-
rous alloys and cemented carbides are the most fre-
quently used turning, milling and boring tool materials.
Other advanced materials include: coated/uncoated
tungsten carbides, cermets, ceramics and polycrystalli-
nes.

The following subjects are included: tool fracture;
thermal cracking; crack initiation and growth; failure
and damage in cutting tools; tool wear; fatigue fracture;
tool flank wear; diffusion wear; cracks in brittle materi-
als; fracture probability; delamination of composites
during machining; shear localization and ductile
fracture.

The cutting tool materials analysed are: steel; ceramic
tools; cemented-carbide tools; boride-cement tools; dia-
mond; ceramics resin concrete; sintered carbide; alu-
minium oxide tools.

9. Chip formation mechanism

Metal cutting is a chip-formation process. The prob-
lem of chip formation and its control has been studied
by trying to define the mechanism of chip formation,
chip flow and chip breaking. The parameters involved
are the tool and workpiece materials (type, strength,
hardness, shape), the cutting data (feed, cutting depth
and speed), the tool geometry, the cutting geometry,
etc. The character of the movement of the chip along
the contact length with the tool is another important
factor. Most of the heat generated in machining is
removed from the cutting zone by the chip. Chip con-
trol is necessary, especially in turning and drilling.
Milling creates a natural chip length due to the limited
length of cutting edge engagement.

To numerically simulate the chip formation mecha-
nism during the machining process is not an easy task.
There are too many complicated factors to be taken
into account: contact and work material deformation
with large plastic strains and friction, high temperature
effects, strain-rate and strain hardening effects.
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The topics in chip-formation processes include: chip
formation in orthogonal machining; chip formation in
high-speed machining; chip formation in microcutting;
chip formation in interrupted turning; chip formation
in oblique cutting; 3D continuous chip formation; seg-
mental chip formation; serrated chip formation; chip
separation; chip breaking; shear localization in chip
formation; chip flow and tool wear; chip–tool interface
contact problems.

10. Optimization and other topics

In this last section, optimization problems arising in
machining are handled. Specifically: tool-shape opti-
mization; machine-shape foundation optimization; opti-
mization of a milling cutter; lathe bed optimization;
optimum fixture design; optimum design of an abrasive
disk; optimum design of a radial drilling machine;
optimum drill geometry; optimum design of a lathe
spindle; optimization of the functional properties of
machines; and optimization problems in electrochemi-
cal machining.

Other topics where the finite-element technique has
been implemented include: CAD and machining; com-
puter graphics and machining; virtual engineering in
machine tool design; error compensation in machine
tools; validation of finite-element codes; and cutting-
force measurement.
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